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AB_STRACT _ _ _ _ (-1,...,-1,1,-1,...,-1,1,-1,...)
Attributed graphs are increasingly more common in many iappl EB®
cation domains such as chemistry, biology and text prosgssh
central issue in graph mining is how to collect informatiuegraph
; . . s Patterns
patterns for a given learning task. We propose an iterativeng
method based on partial least squares regression (PLSpplp a
PLS to graph data, a sparse version of PLS is developed fidst an
then it is combined with a weighted pattern mining algorithFhe Figure 1: Feature space based on subgraph patterns. Theefeat
mining algorithm is iteratively called with different weigvectors, vector consists of binary pattern indicators.

creating one latent component per one mining call. Our ntgtho
graph PLS, is efficient and easy to implement, because thghivei
vector is updated with elementary matrix calculations. xpes-
iments, our graph PLS algorithm showed competitive preatict
accuracies in many chemical datasets and its efficiency igag-s
icantly superior to graph boosting (gBoost) and the naivéhot
based on frequent graph mining.

forth. Like ordinary vectorial data, there are two kinds ediining
tasks; unsupervised [30, 31] and supervised [22]. Amon@rsup
vised learning tasks, graph regression and classificatmridibe
of wide interest. In graph regression, an attributed gragjiven as
an input, and a real-valued output variable is predictectldssifi-
cation, the output variable is binary.

Categories and Subject Descriptors In learning from graph data, one can rely on the similaritpme
1.5.2 [Pattern Recognition]: Design Methodology—Featevalu- ~ Sures derived from graph alignment [28] or graph kernels 25)
ation and selection; H.2.8 [Database Management]: DataBps 6, 16]. However, one drawback is that the features used n-ea
plications—Data mining ing are implicitly defined, and derived clusters are haraterpret.

Another approach is based on graph mining, where a set of smal
graphs (i.e., patterns) is used to represent a graph. Syadlgifeach

General Terms graph is represented as a binary vector of pattern indisdig-

Algorithms, Experimentation, Performance ure 1). Graph mining is especially popular in chemoinfoiinsat
where the task is to classify chemical compounds [11, 7]. Whe
KeyWOI’dS all possible subgraphs are used, the dimensionality ofe¢htufe

i ) o ) ) space is too large for usual statistical methods. Therefeeture
Partial least squares regression, graph mining, graptibgpshemoin-  gjiection is a central issue in graph mining algorithms, [B035].

formatics To summarize the feature collection methods proposed so far
let us classify them into two categories: mine-at-once &raiive
1. INTRODUCTION mining. In the first category, the whole feature space ist tuyil

one mining run before the subsequent machine learningitigor

As data mining and machine learning techniques continue to : - e
is started. A naive approach is to use a frequent substeugtimning

evolve and improve, the role of structure in the data becanme !
and more important. Much of the real world data is repregente &/g0rithm such as AGM [9], gSpan [36] or Gaston [20] to cdllec

not as vectors, but as graphs including sequences andfoees; frequently appearing patterns. This approach was employ¢d]
ample, biological sequences, semi-structured texts ssiGHTAL and [11], where a linear support vector machine is used &wsfi-

and XML, chemical compounds, RNA secondary structuressand ~ ¢&tion. A more advanced approach is to mine informativespatt
with high correlation to the output variable [19, 1]. Howg\salient

patterns depend on the optimal parameters of the subsdgaemt
ing algorithm, and it is difficult to obtain a small number eétures

Permission to make digital or hard copies of all or part of twork for informative for any learning algorithm [12].

personal or classroom use is granted without fee providatidbpies are Among iterative mining methods, substructure boostinghmet
not made or distributed for profit or commercial advantage that copies ods [15, 22, 26] have been successfully applied to manyrdifte
bear this notice and the full citation on the first page. Toyaoiherwise, to domains such as images [22], videos [21], chemical compoi2&l

republish, to post on servers or to redistribute to listguies prior specific and biological mutation sets [27]. The boosting algorithaisca
permission and/or a fee. ;

KDD’ 08 August 24—27, 2008, Las Vegas, Nevada, USA pattern mining algorithm repeatedly to incrementally fafieature
Copyright 2008 ACM 9178-1-6’0558-193-4/08/08 ‘_1$5‘00_ space. In the first iteration, the patterns with high cotiehawith



the target variable are collected. In subsequent itersitiie algo-
rithm updates the example weights such that more emphasis is
on mispredicted examples. It is reported that it createsuseless
features compared to the mine-at-once methods [22]. Inéhe v

first paper by Kudo et al. [15], AdaBoost was used for updating

the example weights. However, AdaBoost is not efficient apgr
mining, because it takes too many iterations to finish. Tleasmt
papers use mathematical programming-based approachesasuc
linear programming boosting (LPBoost) [3, 24] and quadrptd-
gramming boosting (QPBoost) [26]. Furthermore, to redine t
number of iterations, several patterns are collected atahe time
in one iteration by multiple pricing [22]. Neverthelesshstructure
boosting can still be improved in term of efficiency, becahseom-
putation time for mathematical programming is substalgtlatge.
In itemset boosting [27], it is reported that the computadidime
for mathematical programming is much larger than that neéole
mining. In particular, when solving a regression probleme bas
to use a quadratic program that is computationally more deling
than a linear program.

We propose a new iterative mining method based on partisi lea

squares regression (PLS) [33, 25, 34]. PLS is an iteratige-al
rithm that extracts latent features iteratively from a hijmen-
sional space. An attractive point of PLS is that it dependg on
elementary matrix calculations (i.e., addition and mlittgtions).
Therefore, it is more efficient than other methods dependimg
mathematical programming or eigen-decomposition. In giBdbe
transition from vectorial to graph data is achieved by reiplg the
feature selection step by a pattern mining algorithm [22]PLS, it
is not so simple, because conventional algorithms for Plch sis
NIPALS [33] require the deflation of the whole feature matiThe
feature matrix consists of the feature vectors of all tragnéxam-
ples, and NIPALS substracts a dense matrix from the featatexm
in each iteration. It is possible only if the whole featuretrixais
loaded to memory, which is not practical in graph mining.

The regression function of PLS is linear, but the followipgsial
form,

m
f00 = aiw]x, (1)
i=1
wherew; are weight vectors that reduce the dimensionality of
satisfying the following orthogonality condition:

L=
0 (#1))
We need to determine two kind of paramete{sanda;. Basically,

wj are learned first, and the coefficients are obtained by least
squares regression without any regularization,

wiTXTij = { 2)

n m

o =argminy_ (yk — > ajw] Xi)2.
“ k=1 i=1

®)

Due to the orthogonality conditions, this problem is easitjved
as

n
aj = Z ykwiTxk. 4
k=1

The weight vectors are determined by the following greedy-al

rithm. The first vector is obtained by maximizing the covacda
between the mapped featuXer, and the output variablg,

R w T xp)2
w1 = argmax—zk—1 ka k)
w w

®)

w

subject tow T XT Xw = 1. This problem is solved analytically as

1
w1 = SXTy

In this paper, we develop a sparse version of non-deflatidh PL \wheres is the normalization factor

such that each latent component depends on a limited nunfiber o

subgraph patterns. Then, itis combined with a pattern rgialgo-
rithm to deal with graph data. We call our algorithm graph RIS
gPLS in short. gPLS collects informative patterns in a ledibum-
ber of iterations, as it avoids the discovery of identicdtgras by
means of orthogonality constraints. Like gspan and gBa#itS

employs the DFS code tree [36] as the canonical search sppace o

graph patterns. The criterion for pattern search is quitgpks and
itturns out that the pattern search algorithm in gBoost, (iveighted
substructure mining) can be reused in gPLS as well.

This paper is organized as follows. In Section 2, we intreduc
the PLS regression and present its non-deflation versioctidBe3
explains how PLS is applied to graph data. In Section 4, ekten
experiments for various chemical datasets are presentectio
5 discusses other possibilities in developing graph regresalgo-
rithms. Finally, we conclude the paper in Section 6.

2. PARTIAL LEAST SQUARES REGRESSION

This section reviews the partial least squares regres§a8)
algorithm for vectorial data. We first explain the conven#ibNI-
PALS algorithm and introduce a new non-deflation algoritftne
transition from vectorial to graph data will be discussethignext
section.

Let us assuma training example$xs, y1), ..., (Xn, yn) where
X € xd andy; € R. The outputy; is assumed to be centralized
> Vi = 0. Denote byX the design matrix, where each row corre-

sponds tox.” . Also denote byy the vector of all training outputs.
p i W g outp

0=/ yTXXTXXTy.

For thei -th weight vector, the same optimization problem is solved
with additional constraints to keep orthogonality,

cn_ w T xp)2
wj = argmax—zk—lyTk k)
w w'  w

(6)
subject to
w! XTXw = 1, u)TXTij =0 j=1...,i—-1

The optimal solution of this problem cannot be obtainedyiclly.
Since the regression of is done without any regularization, it is
important to choose the number of weight vectors appragyiat
Typically, itis chosen to optimize the cross validatioroeror other
model selection criteria such as AIC and BIC [25].

2.1 NIPALS

Letus define theth latent component as = Xw;j. The NIPALS
algorithm [33] solves the optimization problem (6) in aninedt
way, namely the optimal latent componettare obtained first and
the correspondingp; is obtained later. Let us defing_, as the
matrix of latent components obtained so far,

Ti-1=(t1,...,ti—1)
and define a projection matrix as

Po1=Ti—a(T L Ti—) I = Tioa Tl @)



The second equality is due to the orthogonal conditionsTRgn,
a deflated design matriX is defined as
Xj=X—-P_1X.
Now we solve the following problem based on the deflated matri
n Tg., 2
%
vj = argmax—(z‘k:1 yf ik)
v (V)]
wherep;” X;" Xjvj = 1. Asin (5), the optimal solution has the form

1.~
vi = ;xry. (8)

wherey = /yTXi X" X; X;"y. In literature, we could not find

appropriate terminology fooj, but here we call it the-th pre-
weight vector, because it is used to create the “real” weightor
wj . Based onj, the optimal latent component is obtained as

ti = )~(i vj.
Finally, we have to recover the optimal weight vectgrbased on
the following equation [8],

Xwj =t = XiUi = Xvj — Bj-1 Xvj.

Assuming the linear independence of rowsXaf the equation is
solved as

i—1

wj = vj — Z(w}rXTXvi)wJ‘,
j=1

9)

which corresponds to the optimal solution of (6).

The NIPALS algorithm consists of only elementary matrix eom
putations and therefore is more efficient than solving (@rason-
strained quadratic program. The algorithm is summarizego-
rithm 1. Due to the following relationship,

Xi = Xj_1— ti—ltiT_l)N(i—la

the deflated matrix is updated rather than recomputed in iéarch
ation. However, for our purpose, the crucial drawback is tha
sparseness of is lost by deflation.

Algorithm 1 The NIPALS algorithm.
1: Initial: X1 = X

2:fori =1,...,mdo
3 vj = )~(iTy/;1.

4 tj= X; v}
5
6
7

> Pre-weight vector

~ > Latent components
Xig1=Xj — titiTXi > Deflation
. end for

: Conversion obj to w; for alli as (9)

2.2 Non-deflation sparse PLS

We now present an alternative derivation of PLS that avdids t
deflation step and that is based on the connection of PLS the th
Lanczos method and that uses recursive fitting of residBats3].

Substituting the definition of the projection matrix to theep
weight vector (8), we obtain

1
v =-
n

The NIPALS algorithm first computes the deflated matik (I —
Ti_lTizl) and then multiplies it withy. However, an obvious

XT( =TTy (10)

alternative way is to compute the residual vector
ri=0-TiaTlyy.

and then multiply it withX . Following this idea, the NIPALS
algorithm can be modified to a non-deflation version (Aldorit2).

In graph mining, itis useful to have sparse weight vecigrsuch
that only a limited number of patterns are used for predictido
this aim, we modify the algorithm further by introducing sgeness
to the pre-weight vectors; as follows:

vij =0, if bjjl<e, j=1,...,d.

Due to the linear relationship betweepandwj, it is understood
thatw; becomes sparse as well. The sparse weight vectors satisfy
the orthogonality conditions (2). There are two alterretiays to
determine the threshold 1) Sort|v;; | inthe descending order, take
the topk elements, and set all the other elements to zero. 2) ®et
afixed threshold. Inthe latter case, the number of non-zeroents
in vj may vary. In the experiments presented in this paper, we took
the former topk approach to avoid unbalanced weight vectors and
to make efficiency comparisons easier.

It is worthwhile to notice that the residual of regressiortaithe
i — 1-th features,

i-1
-
rik=Yk_zajwj Xk
=1

1y

is equal to the&k-th element of . It can be verified by substituting
the definition ofaj (4) into (11). So in the non-deflation algorithm,
the pre-weight vectos is obtained as the direction that maximizes
the covariance with residues. This observation highlighésre-
semblance of PLS and boosting algorithms [3]. In boosting, e
ample weights are iteratively altered such that the exasnpith
high residues are weighted more. In this formulation of PL,
clearer that the residue vector plays a role similar to thabost-
ing’s example weights. The connection between PLS and imgpst
is discussed in [17].

Algorithm 2 Non-deflation Sparse PLS algorithm.
1: fori =1,...,mdo

22 ri=(-TaT )y > Residue

3 0i=XTri/n. > Pre-weight vector
4 v =0,ifvjjl<e,j=1,....,d > Sparsify

5. wj =vj — Z'j_:ll(w}rXTXDi Ywj > Weight vector

6: tj = Xw;j > Latent components
7: end for

3. GRAPH PLS (GPLS)

In this section, we discuss how to apply the non-deflation PLS
algorithm to graph data. Here we deal with undirected, kdbahd
connected graphs. To be more precise, we define the graplsand i
subgraph as follows:

Definition 1  (Labeled connected graph). Alabeled graphisre
resented in a 4-tuplé = (V, E, £, 1), whereV is a set of vertices,
E C V x Visasetof edgeg; is a set of labels,aldVUE — L
is a mapping that assigns labels to the vertices and edgeheted
connected graph is a labeled graph such that there is a patbdre
any pair of vertices.

Definition 2 (Subgraph). Le&’ = (V/,E’, £/,l") andG =
(V, E, £,1) be labeled connected graph&’ is a subgraph o6



Tree of Substructures Algorithm 3 gPLS
Liri=y, X=90
2:fori=1,...,mdo

33 P ={p] ’Z?zlfij Xjp| > €} > Pattern search
4. Xp: design matrix restricted t;
5. X« XUXp
6:  oj=XTri/n > Pre-weight vector
7 wj = vj — Z'j_:]i(w}rXTXvi Jwj > Weight vector
8 tj = Xw;j > Latent component
9 ripr=ri— (Yt > Update residues
10: end for

Figure 2: Schematic figure of the tree-shaped search spaceymf Algorithm 4 Pattern search algorithm

patterns (i.e., the DFS code tree). To find the optimal paéi- 1: procedure Pattern Search

ciently, the tree is systematically expanded by rightmgtgresions. 2 P g
3.  for p € DFS codes with single nodes do

(G’ C G) if the following conditions are satisfied: ()’ C V, 4. project(p)

(2 E CE (3L CL @Y CV,I0)=10)and (5) 5. end for

ve C ELI(E) = I'(¢). If G’ is a subgraph o5, thenG is a 6:  retunP

supergraph o6’ 7: end procedqre
8: function projectp)

Our training set is represented @31, Y1), - - . , (Gn, Yn) where 9: if pis nota minimum DFS code then
Gj is a graph andj; € % is a target value. Lep be a subgraph 10: return

pattern in a graph, ar@ be the set of all patterns, i.e., the setofall 11: end if
subgraphs included in at least one graph. Then, the wholeréea  12:  if pruning condition (13) holds then

vector of each grapB; is encoded as gP|-dimensional vectox;, 13: return
1 ifpcG 4. endif N
Xip = { _1 other_wisle’ 15:  if p satisfies the condition (12) then
16: P« PuU{p}
This feature space has already been illustrated in Figui®irice 17: endif
|P| is a huge number, we cannot keep the whole design matrix. So18:  for p’ e rightmost extensions g do
we need to seX as the empty matrix first, and grow the matrixas the 19: project’)
iterations proceed. In each iteration, we obtain the seatiemsp 20:  end for
whose pre-weighipjp| is above the threshold, which can be written  21: end function
as
n
P ={p| zrijxjp > €l (12) 15]. Let us define the ga.in function asp) = IZTzlrijx.jp."
=1 Suppose the search tree is generated up to the paiteifit is

. o . . guaranteed that the gain of any supergrgplis not larger thar,
Then, the design matrix is expanded to include newly intcedu we can avoid the generation of downstream nodes withoutdosi

patterns. The pseudocode of gPLS is. described in Algor.ithm 3 the optimal pattern. Our pruning condition is describedodiews.
Most numerical computations are carried over from Alganit

except that the residue vector is updated. Theorem 1. Defing; = sgn(rj). For any patterrp’ such that

The pattern search problem (12) is exactly the same as the onep C p/, s(p') < ¢, if
solved in gBoost [22]. So we can reuse the same method to enu- i _
merateP;. More specifically, it can be done by gspan function in max(s™(p),s”(p)} <e,
the gBoost MATLAB toolbo}. However, we explain the pattern  \yhere
search algorithm briefly for the completeness of this paper.

Our search strategy is a branch-and-bound algorithm thaines st(p)
a canonical search space in which a whole set of patternare e . 4
merated without duplication. As the search space, we ad@pt t (% =+1.%,;=1) =1
DFS code tree [36]. The basic idea of the DFS code tree is & org n
nize patterns as a tree, where a child node has a supergraipé of s (p) 2 > Iril+ > ri.
pattern in its parent node. (Figure 2). A pattern is represeas {i1yi=—1,%,j=1} i=1
a text string called the DFS (depth first search) code. Thenest
are enumerated by generating the tree from the root to lesieg
a recursive algorithm. To avoid duplications, node genamais
systematically done by rightmost extensions. Algorithmhdves
the pseudo code for the recursive algorithm.

For efficient search, it is important to minimize the size lod t
search space. To this aim, tree pruning is crucially imparfas,

(13)

2 > |ri|—iri

Other conditions such as the maximum size of pattern (mazpait
the minimum support (minsup) can be used in combination thigh
pruning condition (13).

1http://www. kyb.mpg.de/bs/people/nowozin/gboost/
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Figure 3: Regression accuracy (left) and computationad {iright)
against maximum pattern size (maxpat) in the EDKB dataset.
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Figure 4: Classification accuracy (left) and computatictimle
(right) against maximum pattern size (maxpat) in the CPDBgizt.

4. EXPERIMENTS

In this section, we evaluate our method using four publiebila
able chemical datasets: EDRBCPDE®, CAS* and AIDS. Links

to these datasets can be found in ChemDB [2]. Table 1 shows the
summary of the datasets. Among them, the AIDS dataset [14, 4]

is by far the largest both in the number of examples and thghgra
size. EDKB is a regression dataset, but the others are fitadigin
datasets. In gPLS, we solved classification problems byessgr
ing the target valuesg-1, —1. In gBoost, we employed the gBoost
MATLAB toolbox for classification datasets so that the expen-
tal results are easily reproducible. Since the toolbox dae®ffer
regression solvers, we implemented a graph boosting i€greal-
gorithm based on quadratic programming. See Appendix failde
We set minimum support parameter (minsup) to 2 for relativel
small datasets (EDKB, CPDB and AIDS1), and to 10% of the
number of positives for large datasets (CAS, AIDS2 and AIPS3
Throughout the experiments maximum pattern size (maxpa@ti
to 10. We used AMD Opteron 2.2GHz system with at most 8GB
memory for all experiments.

4.1 ¢gPLS vs gBoost

GPLS is compared with gBoost in five fold cross validationexp
iments. In gPLS, there are two parameters to tune, nametyutime
ber of iterationsn and the number of obtained patterns per search
k. For each dataset, we exhaustively tried all combinatioos f
m = {5, 10, 15, 20, 25, 30, 35} andk = {5, 10, 15, 20, 25, 30, 35}.
In the following, we always report the best test accuracyragradl
settings. Notice that, for AIDS datasets, the parameteregbre

2http://edkb.fda.gof/databasedoor.htmI
3http://potency.berkeley.edu/cpdb.html
4http://www.chemoinformatics.org/datasets/bursi/
5http://d’[p.nci.nih.gov/index.h'[ml

changed asn = {10, 20, 30, 40, 50}, k = {10, 20, 30, 40, 50} to
cope with large-scale data. In gBoost, the regularizatiaram-
eter was varied as = {0.1,0.2, ..., 0.9} for classification, and
C = {10,50, 100 150 200, 100G for regression. The number of
patterns to add per iteration is set to 50 for CAS and AIDS, Hhd
for the other datasets. The accuracy is measure@bfor regres-
sion and by the area under the ROC curve (AUC) for classifinati
The Q2 score is defined as

S i — f(xi)?
2
Z{Ll (Yi - % 2?21 Yi)

which is close to 1 when the regression function fits good, iand
close to 0 when it does not. The interpretation is similahtt for
the Pearson correlation coefficient.

The results of gPLS and gBoost are compared in Table 2. For
EDKB and CPDB datasets, we performed more detailed experi-
ments with different settings of maximum pattern size (Fég8
and 4). In terms of accuracy, it is difficult to decide whichthoal
is better. GPLS was better in EDKB, CPDB and AIDS1 but gBoost
was better in CAS. However, in terms of computational tinfd, §
is clearly superior. In the table, we distinguish the corapiahal
time for pattern search (mining time, MT) and the numericahe
putations (numerical time, NT). The numerical time of gBowas
significantly larger than that of gPLS in all datasets, smonthat
gPLS’s computational simplicity contributes to reduce #uwtual
computational load. Forlarge datasets (AIDS2 and AIDSBpast
did not finish in a reasonable amount of time.

Figure 5 shows the patterns selected by gPLS from the EDKB
dataset. It is often observed that similar patterns areeted to-
gether in the same component. This property makes PLS stable
because the regression function is less affected by srealigas in
graph data.

QP=1-

4.2 Efficiency gain by iterative mining

The main idea of iterative mining is to gain efficiency by mgan
of adaptive example weights. We evaluated how large theeffig
gain is by comparing gPLS and a naive method that enumertes a
patterns first and apply PLS afterwards. Table 3 summariees t
results for different maximum pattern sizes (maxpat). rhive
method, the number of patterns grow exponentially, hereedm-
putational time for PLS grows rapidly as well. GPLS sucoasf
keeps computational time small in all occasions.

5. DISCUSSION

So far, we have mainly focused on gPLS and gBoost. They are
similar in that graph patterns are iteratively collecteddzhon the
weighted mining criterion. Obviously, they are not the oahes
belonging to this family of algorithms. Other boosting nuh
and PLS-like methods could be applied to graph data in thesam
fashion.

However, it is important to recognize that there are twoinlist
classes in boosting algorithms, sequential update aniétotarec-
tive update. Both classes are based on linear classifidatiation,

f(x) = Zwi X .
i=1
In sequential update algorithms including AdaBoost and/as-
ants (GradientBoost, MadaBoost etc.), a new feature is added
in one iteration and the corresponding weight 1 is determined.
However, previously fixed weights are never updated agaithdse
methods, numerical computation per iteration is very sanplt it
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Table 1: Summary of datasets.

label type #data # positives # negatives avg. atoms avg.sbond
EDKB real 59 - - 18.5 20.1
CPDB binary 684 342 343 14.1 14.6
CAS binary 4337 2401 1936 29.9 30.9
AIDS1 (CA vs CM) binary 1324 350 974 48.8 51.0
AIDS2 (CACMvsCl) | binary 40939 1324 39615 42.7 44.6
AIDS3 (CA vs Cl) binary 39965 350 39615 42.7 44.5

Table 2: Results of gPLS and gBoost in various datasets.e¥afuthe p
P: the average number of obtained patterns, MT: mining thfe numeri

arentheses are optimal parameters achievingshésst accuracy.
cal time, ITR: the number of iterations requirediluconvergence.

gPLS gBoost
(mr)y P MT NT AUC/QZT (w/CH* P MT NT AUC/QZT ITR
EDKB | (10,30) 296 16.0 0.0025 .@47' +£0.129| (100") 216 15.6 833 B39 +0.164 9.2
CPDB | (20,15) 258 26.8 0.474 .862+0.0214| (0.4) 260 228 344 @62+0.0316 186
CAS | (30,10) 294 3570 14.1 .870+00098| (0.4) 503 8630 391 .867+0.000251 13.4
AIDS1 | (10,10) 99 290 0.0652 .B73+00538| (0.4) 186 783 299  (52+0138 19.6
AIDS2 | (40,10) 396 50300 167 .D47+0.0266 over 24h
AIDS3 | (50,20) 946 57100 509 .883+0.0541 over 24h

takes many iterations to converge. In graph mining, eachtiten
involves pattern search, so sequential update algorithensat ef-
ficient after all. On the other hand, totally corrective nogth, such
as gPLS, gBoost and TotalBoost [32], update all weights \when
new features are introduced. It requires more complicateaeni-
cal computation but the number of iterations can be by fallema
Also itis possible to collect several patterns in each tterawhich
substantially helps to reduce the number of iterationfi&rrtGraph
LARS [29] could be considered as a totally corrective methgit
updates all weights. However, since it is based on reguattoiz
path tracking, it is not clear how to collect more than onégratby
a mining call.

6. CONCLUSION

We presented a novel graph regression method based onl partia
least squares regression. Experiments showed that gPLitias
efficiency than gBoost. However, gPLS cannot completeljeip
gBoost, because gBoost has an advantage in its flexibilitth &Vit-
tle modification in mathematical programming formulatigBoost
can solve various machine learning problems, such as @ass-cl
SVM, ranking and the positive/negative unbalanced classifin
problem. In this paper, we used graph data only, but gPLS ean b
applied to subclasses of graphs such as trees, sequenciésnand
sets, simply by replacing graph mining with an appropriateimg
algorithm.
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APPENDIX

Here we briefly describe the gBoost regression algorithmosBo
ing methods construct a linear combination of weak hyp@athés
come up with a better prediction. In our case, a weak hypathes
corresponding to each subgraph pattpris described as

w11 ifpcGi,
'P ™ ] —1 otherwise
The regression function is formulated as

n
f() =D apXip+b,
i=1

wherea, b are weight parameters to be learned. The learning prob-
lem is written as
. C < 2
argmlnz lopl + > Z( Z apXip +b—yi)*,

*0 pep i=1 peP

whereC is the regularization parameter to be adjusted. Using the
L1-norm regularizer (the first term), sparsity is enforcedh® pa-
rameters.

The problem is rewritten as the following quadratic program

C n
: +.—v4 EN 22
min Z(ap—l—ap)—l—ZZfI (14)
peP i=1
sit. > apxip+b—yi <&, i=1....n (15
peP
yi— > apXip—b<&, i=1...n (16)
peP
at,a™ >0, ¢>0, 7

whered; is a slack variablegp = a?{ — ap. The above quadratic
program hasP| variables and 2 constraints. Directly solving this
primal problem is hard due to the large number of variables.in
Thus, we consider the dual problem:

. 1< _ . _
min oo DG HADP= 2 NG -4 (18)
i=1 i=1
n
st. —1< > (4 —i)Xp <1 VpeP (19)
i=1

n
> it —am =0, %07 =0, (20)
i=1

whereii+ and/;” are Lagrange multipliers for the constraints (15)
and (16), respectively. Once the dual problem is solvedptimal

solutiona andb are recovered from the Lagrange multipliers of the

dual problem. Though the dual problem has too many conssrain
can be efficiently solved by an iterative procedure callecttiiumn
generation algorithm [3]. First of all, an initial solutiafi 1 is ob-
tained from the problem with no constraints (19). In eactatfen,
one finds the most violated constraint based on the currdun o

A, and add the found constraint to the quadratic program. in ou
case, a constraint corresponds to a subgraph pattern, seetldm
solve the following search problem,

n

argmax > JiXip| .
peP |i=1

wherei = A+ — A~. This search problem coincides with that of
gPLS (12), and can be solved using the same algorithm (Ahguri
4). In each iteration of the algorithm, a dual quadratic paogwith

a limited number of constraints is solved and the obtaindatiso
will be used in the next search. The iteration will be congiduintil
the dual parameter converges.



